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Abstract. We consider the quantization of a class of non bandlimited signals, namely the class of discrete time 

signals that can be recovered from their decimated version. Based on recent results, the signals of interest are 

assumed to be the output of a single interpolation filter (single band model) or more generally the. sum of the 

outputs of L interpolation filters (multiband model). By definition, these signals are oversampled and it is rea- 

sonable to expect that we can reap the same benefits of well known efficient A/D techniques. In fact, by using 

appropriate multirate models and reconstruction schemes, we first show that we can obtain a great reduction in the 

quantization noise variance due to the oversampled nature of the signals. Alternatively, we also show that we can 

achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To 

further increase the effective quantizer resolution, noise shaping is introduced by optimizing pre- and post filters 

around the quantizer. We start with a scalar time invariant quantizer and study two important cases of LTI filters, 

namely the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is 

not related to the prefilter. Closed form expressions for the optimum filters and minimum mean squared error are 

derived in each case for both the single band and multiband models. Due to the statistical nature of the signal of 

interest, the class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying 

(LPTV)M filters and periodically time varying quantizers of period M. Because the general (LPTV)M case is 

difficult to track analytically, we study two special cases in great detail and give complete solutions for both the 

single band and multiband models. Examples are also provided for performance comparisons between the LTI 

case and the corresponding (LPTV)M one. 
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/. INTRODUCTION 

It is well known that if a continuous time signal x(t) is cr-bandlimited, then, it can be recovered uniquely 

from its samples x(nT) as long as T < w/a. Extensions of the lowpass sampling theorem such as the bandpass, 

non uniform and derivative sampling theorems can be found in [1]. Recently, Walter [2] showed that, under some 

conditions, a class of non bandlimited continuous time signals can be reconstructed from uniformly spaced samples 

even though aliasing occurs. Vaidyanathan and Phoong [3], [4] developed the discrete time version of Walter's 

result from a multirate digital filtering perspective. In specific, they considered the class of non bandlimited signals 

that can be modeled as the output of a single interpolation filter (single band model) as in Fig. 1 or as the output of 

the more general multiband model of Fig. 2. The filter F{ej") in Fig. 1 and the filters Fk(eju), k = 0,1,..., L-1, 

in Fig. 2 are usually a subset of L synthesis filters in an M channel maximally decimated perfect reconstruction 

filter bank, although this is not a necessary condition. To give the reader a flavor of the major ideas, consider for 

the moment the single band model of Fig. 1. The discrete time signal x(n) is the output of an interpolation filter 

F(eJ'J). Even though this signal is not in general bandlimited, it is natural to expect that it can be recovered 

from its decimated version x(Mn). To see this, assume that x(n) is modeled as in Fig. 1 and consider x(Mn), 

the Af-fold decimated versions of x(n). If F(eJÜJ) is a Nyquist(M) filter [5], then, x{Mri) is equal to y(n) and we 

have the relation x{n) = S^x{kM)f{n — kM). In other words, x(n) is completely defined by the samples x{Mn) 
k 

even though the filter F(e^u) is not necessarily ideal. In [4], the authors consider the case where F(eju) is not 

necessarily a Nyquist(M) filter and show how similar reconstruction can be done. They also consider the stability 

of the reconstruction process. It turns out that if one of the polyphase components of F(ejüJ) is free from unit 

circle zeros, then, stability of reconstruction is guaranteed. Furthermore, even if all the polyphase components of 

F(eiw) have unit circle zeros, stable reconstruction can still be achieved by using non uniform decimation. In this 

case, a sufficient condition for stable reconstruction is that F{e^u) (assumed FIR) has two polyphase components 

with no multiple zeros, i.e., each polyphase component has distinct zeros and they do not share any common zero. 

In this paper, we consider the efficient quantization of this class of non band-limited signals that can be 

modeled as in Fig. 1 or more generally as in Fig. 2. To motivate such a study, consider the schematic shown in 

Fig. 3 where the box labeled Q is a simple uniform roundoff (PCM) quantizer. After going through the quantizer, 

the signal x(n) is now contaminated by an additive noise component e(n). Assuming that the signal x(n) is 

bandlimited or equivalently oversampled (since a bandlimited signal can be further downsampled), we can low 

pass filter the quantized signal x(n) +e(n). The ideal low pass filter on the right removes the noise in the stopband 

but does not change the signal component. In terms of signal and noise power, the signal power remains unchanged 

whereas the noise power decreases proportionally to the oversampling ratio, usually expressed in the form 2r. It 

can be shown that for every doubling of the oversampling ratio, i.e., for every unit increment in r, the signal to 

noise ratio (SNR) improves by about 3 db or equivalently, the quantizer resolution improves by one half bit (see 

for example [6]). After low-pass filtering, the quantized signal can be downsampled to the Nyquist rate without 

affecting the signal to noise ratio. The idea is therefore to exploit the oversampled nature of the signal x(n) to 
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tradeoff quantizer complexity for higher resolution. This technique is usually called oversampled PCM conversion. 

Consider now the system of Fig. 4 where P(e*u) is a linear time-invariant (LTI) filter. The input signal x(n) is 

still assumed to be oversampled (bandlimited). In addition to the benefits described above, it can be shown that 

this more sophisticated system produces a further decrease in the noise power by "cleverly" choosing the filter 

P(eju) in Fig. 4. The filter pair P(ejul) and 1/P(eju) does not modify the input signal x(n) in any way but only 

affects the noise component e(n). Similar to sigma-delta quantizers, the system of Fig. 4 introduces noise shaping 

in the signal band to allow higher resolution quantization of bandlimited signals. 

With these ideas in mind, observe now the output x(n) of Fig. 1. Even though x{n) is not bandlimited, it 

can be reconstructed from its downsampled version as explained above. In this sense, it can be considered as an 

oversampled signal. The question then arises : Can we obtain advantages similar to the above schemes for a non 

bandlimited signal satisfying the model of Fig. 1 and more generally of Fig. 2 ? Furthermore, for a fixed set of 

filters F(eju) (or Fk(eju), k = 0,1,..., L - 1,), what is the best filter prefilter P{ejw) that minimizes the noise 

power at the output ? Do we gain more by using a more general postfilter V(e]U) instead of p^x ? This is 

a sample of the type of questions we answer in this paper. Indeed, we will show that, by replacing the ideal low 

pass filter with the correct multirate reconstruction system, we can reap the same quantization advantages as in 

the bandlimited case. As a simple example, consider the scheme of Fig. 5 where the finite order filter F(&"") is 

such that its magnitude squared response |F(e^)|2 is Nyquist(M), that is, (|F(e^)|2) |M= 1 (we will motivate 

such an assumption later in the paper). With this assumption, it can be shown that the signal x(n) in Fig. 5 is 

equal to x{n) in the absence of the quantizer and that the entire scheme of Fig. 5 behaves similarly to Fig. 3, 

except that the low pass filtering is now multirate and non ideal. Thus, generally speaking, if a non bandlimited 

signal can be reconstructed from its samples x{Mn) because it satisfies a model like Fig. 1, then, a low precision 

quantizer should allow us to produce a high precision version x{n). 

To bring the analogy closer to the scheme of Fig. 4, we should introduce noise shaping. This can be done by 

using a pre- and post filter before and after the quantizer respectively as shown in Fig. 6. The prefilter P(e"J) is 

traditionally an integrating low pass filter. The post filter 1/P(eju) shapes the noise spectrum in order to further 

decrease the noise variance. In this paper, we will derive closed form expressions for the optimal choice of P(e>u) 

and the minimum average mean square error obtained from such a scheme. Several extensions to the above noise 

shaping idea are then introduced. For example, we relax the requirement that the postfilter is the inverse of the 

prefilter and assume a more general postfilter V(eju). Closed form expressions for the optimum filters in this case 

and the minimum mean squared error are also derived. We would like to warn the reader at this point that no 

optimization of finite order filters is performed in this paper. The emphasis is actually to find an expression for 

the theoretically optimum filters (without order constraint) to get an upper bound on the achievable gain with 

practical inexpensive filters. 

The quantization advantage offered by Fig. 5 and Fig. 6 can be useful, for example, in the following realistic 

engineering scenario. Suppose x(n) is generated at a point where we cannot afford very complex signal processing 

2 



(e.g., in deep space) and needs to be transmitted to a distant place (e.g., earth station). If we have the knowledge 

that x(n) admits a satisfactory model like Fig. 1, we can compress it using a very simple low pass filter P(eju) 

with one or two multipliers and then quantize the output before transmission. The post filter 1/P(e:ju) and the 

expensive multirate filter are at the receiver end, where the complexity is acceptable. 

Assume now that the main aim is to obtain a reduction in the bit rate (number of bits per second) rather than 

accuracy (number of bits per sample). If we are allowed to perform discrete time filtering (of arbitrary complexity), 

we will see that the best approach would be as in Fig. 7. In this set up, we first generate the driver signal y(ri) 

and then quantize it. The signal x(n), which is equal to x(n) in absence of quantization, is then generated. The 

lower rate signal y(n) in Fig. 7 can be regarded as the principal component signal in an orthonormal subband 

coder. We will see throughout this paper that, by choosing this type of quantization system, we can obtain a large 

reduction in the bit rate and/or the quantization accuracy depending on the particular signal model. 

Summarizing, the main issue in this paper is how to take advantage of the signal model (Fig. 1 or Fig. 2) in 

preparing a quantized or compressed version of x(n). Our study is motivated by similar concepts that arises in 

A/D conversion applications. We find that the choice of a particular scheme depends on how much processing we 

are allowed to do before quantization. If processing is allowed, we first generate y(n) by filtering and decimation 

and then quantize it. Otherwise, we quantize x(n) directly and then filter the quantized signal with the appropriate 

multirate scheme. Noise shaping can be also introduced to obtain better resolution. In any case, an improvement 

in accuracy and/or bit rate due to the signal model is always achieved. 

1.1. Main results and outline of the Paper 

1. In section II, definitions and well established facts of various multirate and statistical signal processing concepts 

used throughout the paper are reviewed. 

2. In section III, new results that describe the statistical behavior of signals as they pass through multirate 

interconnections are presented. These results will then be used to derive the theorems of interest of the paper. 

3. In section V, we give several results on the quantization of the non bandlimited signal x(n) modeled as in 

Fig. 1. The signal x(n) is first quantized to an average of b bits per sample and then filtered by the multirate 

interconnection in Fig. 5. We show that the multirate system does not affect the signal component but reduces the 

noise variance by a factor of M. This amounts to the same quantitative advantage obtained from the oversampling 

PCM technique (0.5 bit reduction per doubling of the oversampling ratio). 

4. In section VI, the lower rate signal y(n) is quantized instead of x(n). By quantizing y(n) to b bits per sample, 

the quantization bit rate (number of bits per second) is decreased by a factor of M but noise reduction due to 

multirate filtering is now not possible. 

5. In section VII, noise shaping is introducedln order to obtain better accuracy. First, we consider the use of pre- 

and post linear time invariant filters P(eJW) and as in Fig. 6 together with a fixed time invariant quantizer 

Q. For this case, the optimum filter Popt(e
:,w) that minimizes the quantization noise variance in the reconstructed 

output x(n) is derived and a closed form expression for the average minimum mean square error is obtained. We 
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then consider the more general pre- and postfilters P(eju) and V(eja) as in Fig. 8. Closed form expressions for 

the optimum niters and the average minimum mean square error are also found for this case. 

6. In section VIII, we replace the linear time invariant filter P{e?u) with a more general linear periodically time 

varying filter of period M. This is motivated by the cyclo-widesense stationarity of x(n). Since the problem of 

finding the optimum general (LPTV)M filter (equivalently biorthogonal filter bank) is analytically difficult to 

track, optimal solutions are given for two special cases of (LPTV)M filters. The first solution is for the set of M 

filters Vk(eju) shown in Fig. 9. The filters Vk{eju) and .. act as pre- and post filters for the kth subband 

quantizer. The second solution is for the case of an orthonormal filter bank or equivalently for a lossless (LPTV)M 

filter. The scheme is shown in Fig. 10 for the single band case. 

7. All the results mentioned above are also generalized for the multiband case. Furthermore, examples are provided 

whenever necessary for illustrative purposes. 

//. SUMMARY OF STANDARD MULTIRATE CONCEPTS 

1. Notations. Lower case letters are used for scalar time domain sequences. Upper case letters are used for 

transform domain expressions. Bold faced quantities represent vectors and matrices. The superscripts T, * and 

f denote respectively the transpose, conjugate and the conjugate transpose operations for vectors and matrices. 

The M-fold downsampler has an input-output relation y(n) = x(n) iM = x(Mn). The M-fold expander's input- 

output relation is y(n) = x(n) tM = x(n/M) when n = multiple of M and y(n) = 0 otherwise. The M-fold 

polyphase representation of X(e*u) is given by X(e^) = X0(e^Mu) + e^X^™») + e~^X2(eiMu) + ... + 

e-i(M-i)ujM_](ejMu). The polyphase components are given by xk(n) = x(Mn + k) or, in the frequency domain 

by Xk(ejw) ={eiu!kX{e}u}))\,M. The tilde accent on a function F(z) is defined such that F(z) is the conjugate 

transpose of F(z), i.e., F(z) = Ft(l/z*). 

2. Blocking a signal. Given a scalar signal x(n), we define its M-fold blocked version x(n) by 

x(n) = (x(nM)    x(nM-l)    ...    x(nM-M + l)f (1) 

Equivalently, the scalar sequence x(n) is called the unblocked version of the vector process x(n). The blocking 

and unblocking operations are shown in Fig. 11. The elements of the blocked version x(n) are the polyphase 

components of x{n). 

3. Cyclo-widesense stationary process. A stochastic process x(n) is said to be cyclo-widesense stationary 

with period M, abbreviated as (CWSS)M, if the M-fold blocked version x(n) is WSS. Alternatively [7], [8], a 

process x{n) is (CWSS)M if the mean and autocorrelation functions of x(n) are periodic with period M, i.e., 

E[x(n)] = E[x(n + kM)] V n, A; and Rxx{n, k) = Rxx(n + M, k) V n,k. (2) 

where Rxx(n, k) = E[x(n)x*(n — k)] is the autocorrelation function of x(n). 

4. Antialias(M) filters. F(eju') is said to be an antialias(M) filter if its output can be decimated M-fold without 

aliasing, no matter what the input is. Equivalently, there is no overlap between the plots F(eJ('J~(2'r*/M^) for 

distinct A;inO<A;<M — 1. Since this requires a stopband with infinite attenuation, these are ideal filters. 



5. Orthonormal filter bank. An M-channel maximally decimated uniform filter bank (FB) is said to have the 

perfect reconstruction (PR) property when B.(eju) = E_1(eJW) where E(eju) and R{eju) denote respectively the 

analysis and synthesis polyphase matrices [8]. In the case of an orthonormal filter bank, the analysis polyphase 

matrix is paraunitary, i.e., E(eJa')Et(e-'w)   =  IVu and we choose R(eJW) = Et(e,'u) for perfect reconstruction. 

The analysis and synthesis filters are related by Fk(e>u) = Hk(eiu), that is fk(n) = hk(-n). It follows that, for 
F «du 

an orthonormal filter bank, the energy of each analysis/synthesis filter equals unity, that is /    |-F*(eJ''')| — = 1. 
J-7T 2*" 

6. The coding gain of a system. Assume that we quantize x(n) directly with b bits as shown in Fig. 12. We 

denote the corresponding mean square error (m.s.e) by Edtrect- We then use the optimum pre and post filters (in 

the mean square sense) around the quantizer. With the rate of the quantizer fixed to the same value b, we denote 

the minimum m.s.e in this case by £mj„. The ratio Street/£min is called the coding gain of the new system and, 

as the name suggests, is a measure of the benefits provided by the pre/post filtering operation. 

///. PRELIMINARY RESULTS 

Result 1. Consider any L synthesis Biters (L < M) of an M-channel orthonormal filter hank as shown in Fig. 

2. Assume that the L inputs yk{n) to the synthesis filters Fk(e^) are zero mean jointly WSS processes, not 

necessarily uncorrelated. Then, the statistical correlation (averaged over M samples) between the interpolated 

subband signal xi(n) and the M-sample shifted process Xj(n — Mm) is zero, for all values ofi ^ j and m, that is: 

1    M-l 

— JT E[xi(n - k)xj*(n -k- Mm)] = 0, V n,m and V i,j £ [0,L - 1] (3) 
k=0 

The proof can be found in appendix A. As a consequence, the average variance of the (CWSS)M output process 

x(n) of Fig. 2, where the filters Fk(eiu) are any L synthesis filters of an M-channel orthonormal filter bank, is: 

Z.-1 

M °l = ^f< W 
fc=0 

M-l 

M 

1    M-l 

This can be seen by substituting x(n) in the formula a\ = — 2J -^[la;(n)|2] and using result 1 for the special case 
n=0 

of m = 0 and n = M — 1. If the L inputs to the synthesis filters Fk [e?"3) are zero mean uncorrelated WSS processes, 

the previous result holds without the orthonormality requirement on the filters Fk(eju), k = 0,1,...,L—1. 

Result 2.  Consider the multirate interconnection of Fig.   1 where the input y(n) is zero mean WSS random 

process. If F(eiw) is a Glter (not necessarily ideal) with a Nyquist(M) magnitude squared response, then 

2 _   1 „2 o~ = < (5) 1      M  v 

where o\ is the average variance of the (CWSS)M output x(n). 

Proof. While this is a special case of the above with L = 1, the following proof is direct and more instructive. 

With F(ejlJ) expressed in terms of its polyphase components Rk(ejul), Fig. 1 can be redrawn as in Fig. 13. The 
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Signal x(n) is the interleaved version of the WSS outputs of Rk{ej% So, it has zero mean and a variance which 

is periodic with period M. The average variance is given by : 

,   M-I 1     r-K M-i M-l , ,7T M-l Wo. 
,2^ (6) 

k=o J-1T *=o 

M-l 

The Nyquist property of |F(e*")|2 implies in particular that £ \Rk(ejiJ)\2 = 1 (see [5] pp. 159). The preceding 
k=0 

equation therefore simplifies to a\ — — \    Syy{e3U)— — —ay ■ 

IV. FILTER AND QUANTIZER ASSUMPTIONS 

Filter assumptions. The filters F(e*") of Fig. 1 and F*(e*"), k = 0,1,... ,L - 1, of Fig. 2 are assumed to be 

the synthesis filters of any L channels of an M-channel maximally decimated orthonormal filter bank. Although 

not necessary for developing the results of this paper, we will additionally choose the L channels of the M-channel 

maximally decimated orthonormal filter bank to be the most dominant ones in terms of subband energy. The 

model filters are therefore the so-called optimum energy compaction filters. This last constraint is motivated by 

the fairly recent result that this particular choice of filters minimize the mean square reconstruction error between 

the original signal x(n) and its approximation x(n) [9], [10]. We would like however to emphasize that, unlike 

previous work, the filters in this paper are assumed to be of finite order. Working with ideal brick wall filters will 

obviously contradict the non-bandlimited assumption. 

Quantizer assumption. As a convention for this paper, the box labeled Q represents a scalar uniform (PCM) 

quantizer and is modeled as an additive zero mean white noise source q(n). Because the model filters are not ideal, 

the input x(n) is a zero mean (CWSS)M process. Since the input to the quantizer x(n) is a (CWSS)M process, 

its variance er2(n) is a periodic function of n with period M. Define CT
2
 to be the average variance of x(n), i.e., 

1    M-l 
a"1 - — Y^ a

2(n)   Then, choose the fixed step size A in the uniform quantizer such that the quantization noise 
n=0 . 

variance oi is directly proportional to the average variance of the quantizer input x{n), that is 

^=c2-»o2 (7) 

where a1 is the quantization noise variance, c is a constant that depends on the statistical distribution of x(n) 

and the overflow probability, and CT
2

. is the average variance of the quantizer input. The above relation is justified 

for a PCM quantizer using 3 (or more) bits per sample (see chapter 4 in [11]). If the input to Q is wide-sense 

stationary, the above relation holds with al now denoting the actual variance of the WSS process. 

V. INCREASING THE QUANTIZER RESOLUTION BY MULTIRATE FILTERING 

Consider the set up shown in Fig. 5 for the single band model and in Fig. 14 for the multiband case. In the 

absence of the quantization, the two schemes are perfect reconstruction systems. In the presence of the quantizer, 

the output x(n) in Fig.   5 and Fig.   14 is equal to the original sequence x(n) plus an error signal e(n) due to 
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quantization. The following result shows that, by using the above schemes, a significant reduction in the average 

M 

1    Af-l 

mean square error £ = — V] E{e(n)}2 can be obtained in comparison with the direct quantization of x{n) 
n=0 

shown in Fig. 12. 

Theorem 5.1.  Consider the scheme of Fig.  14 where the L ßlters Fk(ejü}) are assumed to be any L channels 

of an M-channel critically sampled orthonormal filter bank. Under the above quantization noise assumption, the 

1 M~1 L 
average mean square error (m.s.e) £ = — ^ E{x(n) - x(n)}   is equal to TT^. 

n=0 

Proof.   Because the system is a perfect reconstruction one, the average error at the output is due only to the 

quantization noise. The quantization noise q(n) is white and propagates through the L channels of Fig. 14. For 

the kth channel, the variance of uk{n) due to the noise passage through Fk{eiul) is given by: 

<=°lfjFk(en\2^=*$ (8) 

The second equality follows because the filters have unit energy. The downsampling operation does not alter the 

variance of a signal. We therefore obtain o\k = o\k = o\ for all k. Using result 1 of section III, we can write 

«-six =£-5 <9> 
A=0 

For the scheme of Fig. 5, the average m.s.e. £ can be obtained directly by setting L = 1 and is therefore equal 

to —a2.  The quantization noise variance oi obtained by directly quantizing x(n) as shown in Fig.   12 is now 
M  q q 

reduced by the oversampling factor M. The signal variance cr2. on the other hand did not change. By expressing 

the interpolator M in the form 2r, we can immediately see that we can get the same quantitative advantage of the 

oversampling PCM technique, namely, an increase in SNR by 3 db for every doubling of the oversampling factor. 

For example, for the single band case of Fig. 5, if M = 2, then, we get an SNR increase of 3 db whereas if M = 4, 

the SNR increment is by 6 db. Some important remarks are in order at this point : 

1. In the oversampling PCM technique, the quantized bandlimited signal is typically downsampled after the low 

pass filter [6]. The SNR before and after the downsampler is the same and the increase in SNR is only due 

to a reduction in noise power. Similarly, the SNR before and after the interpolation filter in Fig. 5 does not 

change. However, the reason for the SNR increase before the interpolation filter is different from the one after the 

interpolation filter. In specific, at the input of the interpolation filter, the signal variance increases proportionally 

to M since cr2 = Ma2, and the noise power remains fixed. At the output of the interpolation filter, the signal 

variance doesn't change but the noise power decreases in proportion to M. In both cases, this amounts to the same 

SNR improvement. This last technical difference arises because our study assumes a statistical framework rather 

than a deterministic one (typical in A/D conversion applications) and because of our quantizer assumptions. 

2. Intuitive explanation of theorem 5.1. The signal x(n), modeled either as in Fig. 1 or Fig. 2, is oversampled 

and therefore, contains redundant information in the form of an excess of samples. It is by quantizing these extra 
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samples that we obtain the reduction in the quantization noise variance (equivalently in the mean square error). 

We are therefore effectively quantizing with a higher number of bits per sample. This trade off, between the 

quantization noise variance (effective quantizer resolution) and the sampling rate is the underlying principle of 

oversampled A/D converters. 

3. The role of the factor L in this analysis. The parameter L, defined to be the number of channels in the 

multiband case, alternates between two extremes : L = 1 and L - M. When L = 1, we get the best SNR 

improvement at the expense of a more narrow class of inputs x(n). When L = M, it is clear from (9) that no noise 

variance reduction is achieved since the class of signals is now unrestricted. We can also see this by noticing that 

the multirate interconnection in Fig. 14 becomes a perfect reconstruction filter bank that is signal independent. 

The parameter L therefore determines the tradeoff between the generality of the class of signals x(n) and the 

reduction in quantization noise variance. 

4. A cascade of the scheme of Fig. 5 does not provide any further gain. Using the scheme of Fig. 5, we obtained 

a reduction in noise by a factor M. If we use a cascade of the same filtering scheme as in Fig. 15, no further 

noise reduction is obtainable. Using the polyphase identity [5] and keeping in mind that \F(eju)\2 is Nyquist(M), 

the product filter F(ej(J)F(eju) together with the expander and decimator reduces to an identity system. Fig. 15 

therefore simplifies to Fig. 5 and the average m.s.e is the same. 

VI. QUANTIZING AT LOWER RATE 

A consequence of the previous results and discussion is then the natural question: what if the discrete time 

filtering of the oversampled signal is not a major burden ? If we know that x(n) can be modeled quite accurately 

by the filter F(eju) of Fig. 1 or the filters Fk(e^), A; = 0,1,..., L - 1, of Fig. 2, we filter and downsample x(n) 

accordingly to obtain either y(n) or yk(n), k = 0,1,.. .,L - 1. The quantization systems for the two models are 

shown in Fig.  7 and Fig.   16 respectively. We can then in principle quantize the decimated signal y(n) in Fig. 

7 with b = Mb bits per sample or the signals yk(n), k = 0,1,... ,L - 1, of Fig.  16 with an average number of 

bits per sample b = — b bits. This situation is equivalent to fixing the bit rate (number of bits per second) to be 
Li 

equal to b in order to trade quantization resolution with sampling rate. Moreover, for the multiband case, we can 

allocate bits bk to the driving signals yk{n) in an "appropriate" manner. At this point, we will however assume 

that the goal is to actually obtain a reduction in the bit rate. To achieve this, we let b be equal to b for both cases 

and analyze the quantization systems of Fig. 7 and Fig. 16 under this condition. By fixing the number of bits 

per sample and decreasing the signal rate, the bit rate will automatically decrease by M/L. However, since the 

quantizer resolution did not increase, the quantization noise variance should not differ from the direct quantization 

case of Fig. 12. This last statement is verified formally in the next theorems. 

Theorem 6.1. Consider the scheme of Fig. 7. Using a fixed number of bits per sample b to quantize y(n), the 

average mean square error £ is equal to a2, where a2 is the noise variance obtained from directly quantizing x(n) 

using b bits per sample. 
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Proof.  Let a2 be the noise variance of Fig.  12 and £ be the average mean square error of Fig.  7. Using (7), 

1 ^o-26„2 _  1 , 
M y     M 

we can write a\ = c2-2ba\. But, by result 2 of section III, £ = —c2_26o^ = —c2-2bMo\ = <r2, where a\ is the 

average variance of x(n). ■ 

The theorem indicates that, for the single band model and under a fixed number of quantizer bits b, quantizing 

the lower rate signal y{n) is as accurate as directly quantizing x(n). This is expected and is in fact consistent with 

the observation of section V regarding the tradeoff between the average m.s.e due to quantization and the rate of 

the signal. The next theorem for the multiband case gives a similar conclusion. 

Theorem 6.2. Consider the scheme of Fig. 16. Assume that we quantize yk(n) at b bits per sample for all 

k. Then, the average mean square error £ is equal to a2., where a2 is the noise variance obtained from directly 

quantizing x(n) using b bits per sample. 

Proof. The average mean square error at the output of Fig. 16 is equal to 

fc=0 fc=0 

where b denotes the fixed number of bits allocated to the A;th channel quantizer. The noise variance a2 in Fig. 12 

is equal to c2~2ba2, which in turn is equal to (10). ■ 

VII. NOISE SHAPING BY TIME-INVARIANT PRE- AND POST FILTERS 

Following the philosophy of sigma-delta modulators, we now perform noise shaping to achieve a further 

reduction in the average mean square error. To accomplish this, we propose using LTI pre- and post filters around 

the PCM quantizer as shown in Fig. 6 for the single band model and in Fig. 17 for the multiband model. We 

first use a prefilter P(eJU) and assume that the postfilter is its inverse. We then relax this condition and assume 

a more general postfilter V(e?u). The goal is to optimize these filters such that the average m.s.e at the output 

of either quantization system is minimized. The noise shaping filters to be optimized are not constrained to be 

rational functions (i.e., of finite order) and non causal solutions, for example, are accepted. 

Although our quantizer design assumptions are the same as before, the quantizer input is not anymore the 

(CWSS)M process x(n), but a filtered version of it, which we denote by z(n). Following (7), the noise vari- 

ance in this case is given by a2 = c2~2ba2 where a2 is the average variance of the process z(n). We emphasize 

that z(n) is a (CWSS)M process since the output of a linear time invariant filter driven by a (CWSS)M process 

is also (CWSS)M [8]. It is then possible to express cr2 in terms of the prefilter P(e"J) and the so called average 

power spectral density (see below) of the process x(n), denoted by 5IX(eJW), as follows : 

*l=j;fjP(en\2Sxx(en^ (11) 

The proof of (11) can be found in appendix C. The average power spectral density is a familiar concept that 

arises when "stationarizing" a (CWSS)M process [12],[13],[14] and satisfies the well known properties of the 
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power spectrum of a WSS process. It is defined to be the discrete time fourier transform of the time averaged 
1   M-\ 

autocorrelation function Rxx(k) given by — ^ E[x(n)x*(n - k)]. Another interpretation of the average power 
Tl—0 

spectral density which can be physically more appealing is based on the concept of phase randomization and is 

reviewed in appendix B. Finally, if x(n) is modeled as in Fig. 1, it can be shown that : 

Sxx(e^) = ^Syy(e^M)\F(en\2 (12) 

whereas if the signal satisfies the multiband model of Fig. 2, the average power spectral density takes the following 

form : 

Sxx(ej») = -^Ft(e^)Sy(e^M)F(e^) (13) 

where F(eJ'u) = (F0(ej(J)    Fi(ejül)    ...   FL-i(e
jiJ) )T and Sy(eJa') is the L x L power spectral density matrix 

of the L WSS inputs yk(n).   Note that, when the signals yk(n) are uncorrelated, equation (13) simplifies to 

1  i_1 

— ^2Syk(ejuM)\Fk(ejiJ)\2.   The proofs of (12) and (13) are given in appendix D. The expression (12) was 
k=o 

derived previously in [8] for the special case where F{ei<J) is an anti-alias(M) filter.  Furthermore, the authors 

prove that the output process x(n) is WSS if and only if F(eja) is an anti-alias(M) filter.   In summary, the 

statistical properties of the output x(n) of Fig. 1 depend on F(eiw). If the filter is an anti-alias(M) filter, then, 

x(ri) is WSS with a power spectral density Sxx(eju) in the same form as (12). Otherwise, x(n) is a {CWSS)M 

process and in this case, the average power spectral density Sxx(e?w) is given by (12). 

7.1. Case where the postfilter is the inverse of the pre filter 

Theorem 7.1.1.  Consider the scheme of Fig. 17 under the same assumptions of section IV. The optimum preßlter 

P(ejlJ) that minimizes the average mean square reconstruction error has the following magnitude squared response: 

^^..ffi^jn (14) 
\JSxx{ei") 

Proof.  We first observe that in the absence of quantization, the system of Fig.  17 is a perfect reconstruction 
1   M-l 

system.  Therefore, the average mean square reconstruction error a2
e = — ^J E[x{n) — x(n)]2 at the output is 

n=0 
due only to the noise signal. Let Vk(n) be the filtered noise component in the kth. channel of the L-channel filter 

bank of Fig. 17. The variance of this signal o\k is equal to 

Since the downsampling operation does not change the variance of a process, we can write 

fc=0 

Using (7) and (11), we get 

c2" 

„a-_LVv   -«2±- f   E^m^K±L (16) e~M{^   Vk       "MJ^       |P(e^)|2       2TT V   ; 

_2  

°'-   M 
I' S   (e*>)\P(e*>)\& r ^=ol^(^)l2^ (17) j_^xx{e    )|F(e    )|  2nJ_^        |p(eJ.u)|2        2^ [H) 
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To find the optimum prefilter P(eju), we apply Cauchy-Schwartz inequality to (17) to obtain: 

c2-2b 

e        M 

/TV 

\ 

. dw 
5,,(e^)(£lWw)|2S2 (18) 

«=o 

Since this lower bound is independent of P(ejiJ), it is indeed the required minimum and is achieved iff 

which gives (14). ■ 

A number of observations should be made at this point. First, the optimum filter is not unique since the phase 

response is not specified. Second, the above derivation assumes that the input average spectrum Sxx(ejiJ) ^ 0 for 

all uj. The assumption is a reasonable one because x(n) is assumed to be non bandlimited and therefore Sxx(ejiJ) 

cannot be identically zero on a segment of [0,2n). If Sxx(eju) has an isolated zero for some w, then, the resulting 

prefilter will have a zero on the unit circle and is therefore unstable. In any case, a practical system would use 

only a stable rational approximation of the ideal solution. Finally, we note that the optimum filter for the scheme 

of Fig. 6 can be obtained again as a special case by setting L = 1 in (14). The optimum prefilter will then have 

the following magnitude squared response: 

|Pop4(e^)|2 =    lgjf!L (20) 
>JSxx(et") 

and can be regarded as a multirate extension of the half whitening filter [11]. Using (20), we can derive an 

interesting expression for the coding gain of the scheme of Fig. 6. 

Theorem 7.1.2.  With the optimum choice of the pre- and post Glter, the coding gain expression for the scheme 

of Fig. 6 is 
Mf Syy{e^)^ 

QoPt=  ,    J~n   VV        \2=M.Qhw (21) 

(l^y/S^fä 

where Qhw is the half whitening coding gain of the WSS process y(n) [11]. 

Proof. By definition, the coding gain of the system is given by 

G °\        £  Mf:jxx(ei«)£ 
yopt = 7— = 1  — 1   \^) 

"Pt      (i? /-, \JSxx{e^)\F{e^)\^Y      (/:„ Vtexx(e*")|F(c*'')|&)3 

Substituting (12) in (22) and simplifying, we get 

MI-n Syy(e^Mu)\F(e^\2^ _ 2TT 
Jopt (23) 

U:*y/sw&Ma)\F&u)\2&)2 

The integrals in both the numerator and the denominator can be interpreted as the variance of a WSS random 

process with a power spectrum density equal to Syy{eiMw)\F{eju)\2 and ^/5j/!/(eJMw)|JF(eja')|2 respectively. But 
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we know that downsampling a WSS process produces another WSS process with the same variance. Therefore, 

we can write 

n M/:„(Sw(e^)|n^)|2)iMJL (24) 
Pt (i:MSvv(ejMu)\F(e^W) IM <£Y 

Using the fact that (Syy(e^M^)\F(e^)\2) ±M= Syy(e^)(\F(e^)\2) iM and that (|F(e^)|2) lM= 1, we get (21). ■ 

The factor M in (21) is again due to the oversampled nature of the signal x(n). It is interesting to note that the 

noise shaping contribution to Qopt in (21), which we denote by Qhw, is exactly the coding gain we would obtain 

by half whitening the WSS process y(n) in the usual way [11]. By appealing to the Cauchy Schwartz inequality 

again, we can show that Ghw > 1 with equality iff the power spectral density Syy(e
ja) is a constant, i.e., y{n) is 

white noise. Therefore, for the particular system of Fig. 6, we will not get additional coding gain by noise shaping 

if the driving WSS process y{n) in Fig. 1 is white noise. For completeness, we would like to mention that the 

following expression for the coding gain of Fig. 17 (the multiband case) can be derived under the assumption that 

the JWSS processes yk(n), k = 0,1,..., L - 1, are uncorrelated : 

MJ% EL
k=oSyk(ejMu)\Fk(e^)\2^ 

/opt 

(/:. JZ^o Syi(e^m(e^)\^EL
nZo l*"n(e*")|2g) 

(25) 

7.2. Using a more general postfilter 

Consider now the more general system of Fig. 8 where the postfilter is not assumed to be the inverse of 

the prefilter. The multiband case is shown in Fig. 18. The goal is to jointly optimize the prefilter P(eju) and 

the postfilter V(ejiJ) to again minimize the average m.s.e = 1/M^f^1 E{x(n) - x(n)}2 under the following 

assumptions: 

1. The input x(n) is assumed to be a zero mean real wide sense stationary process. 

2. The input x(n) and the quantization noise q(n) are uncorrelated processes, i.e., E{x(n)q(m)}  = 0Vn,m. 

3. The quantization noise q{n) is white with variance a2 as in (7). 

4. The filters F(eJLJ) and V(ej,J) are not constrained to be rational functions and can be non causal. 

5. The power spectral density Sxx{eju>) is positive for all ui. Furthermore, for the derivation of the optimum 

prefilter, we will also require Sxx{e^) and its first derivative to be continuous functions of frequency. 

To solve the above problem, our approach will be the following : First, consider the single band case of Fig. 8. 

Unlike previous quantization schemes, we observe that in the absence of the quantizer, the scheme of Fig. 8 is not 

a perfect reconstruction system. The error sequence e(n) = x{n) — x(n) has in fact two components: one due to 

the mismatch between the pre- and post filters and the other due to the filtered quantization noise. We cannot 

therefore simply minimize the mean square reconstruction error before the downsampler as in the previous sections. 

Using the m.s.e definition given above, we derive an expression for the average mean square reconstruction error 

l/MJ2n=o ^{e2(n)} in terms of the filters and the average power spectrum of the signal x(n) and noise q(n). 

The use of the average power spectral density of the (CWSS)M input x(n) in this case is not theoretically correct, 

even under the same quantizer assumptions as before. Nevertheless, it is necessary to work with this quantity to 
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obtain any meaningful comparison between this more general set up and the one of the previous subsection. The 

calculus of variation is used as a tool to derive closed form expressions for both the optimum pre- and post filters 

which are then used to obtain the coding gain expression of Fig. 8. Finally, we will show how to the generalize 

the results for the multiband case of Fig. 18. 

Theorem 7.2.1. For a fixed prefilter P(ejiJ) and a given ßlter F(eju), the optimum postßlter Vopt(e
juJ) is: 

*W(e'"> = i " ciJ"f}       . -1Ä7 <26> 5*-(ei") + j^/->(e'")l'V")l£ 
Proof. The average mean square reconstruction error can be expressed as follows: 

1   M-l 

n=0 

1    M-l 1    M-l .   M-l 

= E{x\n)} + -L £ E&^ ~ i £ E{x(n)x(n)} - - £ E{x(n)x(n)} 
n=0 n=0 n=0 \^'J 

= /' sxx(en^ + ^fjx^n\p{en\2\v{enf\F{en\2^ 

+ ^/^|V(eJ«)|V(e*)|a|j-^ 

where R stands for the real part. First, observe that the average m.s.e dependency on the phase of the filters 

appears only in the last term. To minimize (27) with respect to the phase of the filters, the product P(ejiJ)V(eju) 

must be zero phase. To see this, simply set P(e*") = \P(e*u)\et*M and V(e?u) = \V(e^)\e^u\ The real part 

of P(eju)V(ejw) is equal to \V(ei{J)\\P{eiu)\cos{<t>{uj) + $(w)). To minimize (27), cos(</>(tj) + $(o/)) must be equal 

to one. Dropping the real notation SR in (27), we now turn to the magnitude squared response of the filters. We 

first fix the prefilter P(eju) and optimize |F(ei'")|. This can be done by applying the Euler-Lagrange equation 

from the calculus of variation theory [15] to (27). The resulting expression is (26). ■ 

It is interesting to note that the post filter is independent of F(ejuJ). Substituting (26) into (27), we obtain the 

following average m.s.e expression : 

2      =  f Sxx(e^)(Sxx(e^)\P(e^)\2(M - \F(e^)f) + c2~26MJ^ Sxx(e*)\P(e^)f £) du 
(M ' '     J-n Sxx(ei")\P(e^)\2+c2-™j:Jxx(e^)\P(eJ»)\2£ 27r 

The above equation is only a function of the magnitude squared response of the prefilter. From this point on, the 

problem under study is very similar to the one analyzed recently in [16] and in fact, becomes exactly the same 

by setting M and F(e}u>) to unity in equation (28). We will therefore omit the proofs of the upcoming theorems 

referring the reader to [16]. 

Theorem 7.2.2.  The squared magnitude response \P0pt(ejw)\   that minimizes £(|P|2,6), given in (28), is also 

the solution of the following constrained optimization problem: 

r Sxx(e^)(Sxx(e^)\P(e^)\2(l - \F(e^)f) + c2~26) dw 
min /      7. 0 ! ~ \^'^) 

|P(e^)|2    J-K Sxx(eJ»)\P(e^)\2 + c2-2b 2TT 

subject to: 

f Sxx{en\P{en\2~ = 1 (30) 
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Theorem 7.2.3.  The preßlter \Popt(e^)\   that minimizes (29) under the constraint (30) must have a magnitude 

response |P0pt(eJW)|   in the following form: 

|P,„(e*)|^m(0,^L( ,l + *-U -^V   «[-.I (3D 
V5„(e») V-» VS«(«*")|F(«*")IÜ!     VS-<°*"' 

Theorem 7.2.4.  With the optimal choice of pre- and postRlters, the coding gain expression for the scheme of 

Fig. 8 is 

Gopt = (l + c2-2b)MGhw (32) 

as long as \Popt(ejlJ)\2 in (31) is never set to zero V u>. Here, Qhw is again the half whitening coding gain of the 

WSS process y(n). 

Note that in this case the coding gain of the more general set up is a concatenation of three factors : Ghw due to 

the noise shaping, the oversampling factor M due to the signal model and 1 + c2~26 due to using a more general 

form of pre- and post niters. 

To conclude this section, we would like to repeat the same procedure for the more general scheme of Fig.   18. 

We claim that, for this case, the optimum postfilter is still given by (26) and the optimum pre- filter magnitude 

squared response expression is obtained from (31) by simply replacing \F(ejiJ)\ by JYlk=o I^M^"')!2- To prove 

this, the key is to derive an expression for the average mean square reconstruction error of Fig. 18. Clearly, if we 

can show that £ for the multiband case can be expressed as 

1   M-I 1   M-I 1   M-l 
£ = E{x\n)} + ^ £ E{£2(n)} ~MY, E{£(n)x(n)} - — £ E{x(n)x(n)} 

n=0 n=0 n=0 

= £ Sxx(ej»)^ + ± jT Sxx(en\P(enf\V(en\2 £ 1^(^)1^ (33) 

+ jjjy2
q\V(en\2 £ W(e^)\2^ ~ j;2$t£jxx(enP(enV(en £ \F(^)f^ 

then, from the previous analysis, the above claim follows immediately. To derive (33), we need to only consider 

the second term and one of the cross terms. The second term l/M£3nJ|j E{x2(n)} is the variance of the signal 

estimate at the output of Fig. 18. But from result 2 of section III, we know that it is equal to \jM ^2kIQ o\,k where 

CT2
fc is the variance of the signal estimate before the fcth channel downsampler, k = 0,..., L — 1. Substituting with 

0yk in this last relation, we obtain the second and third integral in (33). Consider now one of the cross terms, say 

l/MY!,n=o E{x(n)x(n)}. We can rewrite x(n) as X)*=o ^*(n) where ifc(n) is the signal estimate at the output of 

the fcth channel. By the linearity of the expectation, this gives l/MY^k=o 52n=o E{xk(n)x(n)}. By interpreting 

the single band case as the kth channel, the last integral follows easily. Equation (33) is therefore established and 

the claim is proved. 

Example 7.1. Case of a MA(1) process y(n). Assume that the input x(ri) is modeled as in Fig. 1 with M = 2 

and F(eiu) = —T=(1 + z~l).  Let the driving WSS signal y(n) be a zero mean gaussian MA(1) process with an 
v 2 
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autocorrelation sequence in the form 

jfc = 0. 

A = 1,-1. 

otherwise. 

The MA(1) process has to have   D   ,J    < 1/2 to ensure that the power spectral density is indeed non negative. 
Ryyifl) 

We therefore restrict 6 to be between -1 and 1. The power spectrum of the MA(1) process is given by: 

Svv{en = l-2j^-¥jCos{u) (34) 

Substituting (34) in (21), the coding gain expression of the scheme Fig. 6 becomes 

Gopt ~ / r *F* {   ' 
II    ^/(l+6*-2ecoS(<j))^ 

The integral in (35) is equal to F(—0.5 , -0.5 ; 1 ; 62) where F(a , b ; c ; d) is Gauss's hypergeometric function. 

From [17], F(-0.5 , -0.5 ; 1 ;02) can be rewritten as (1 + 6)F(-0.5 , 0.5 ; 1 ; 40/(1 + 6)2). This, in turn, can 
2 >^^— 

be simplified to (1 + 9)—E(2y/(\6\)/(l + 6)) where E(.) is the complete elliptic integral of the second kind. The 
7T 

coding gain of the more general system can be obtained by multiplying (35) by (1 + c2-26) and obviously depends 

on the number of bits b. The plots of the coding gain are illustrated in Fig. 19 for b = 3 and c = 2.4. 

Example 7.2.   Case of an AR(1) process y(n).  With the same assumptions as in example 7.1, let the driving 

signal y(n) be a zero mean gaussian AR(1) process with an autocorrelation sequence in the form Ryy(k) = p'*' 

where p is between 0 and 1. The power spectrum of the AR(1) process is 

Substituting (36) in (21), the coding gain expression for the scheme of Fig. 6 is as follows: 

2 
6opt = T~r I d^V ^ 

(1 " p2) U_» >/(l + />2-2po^M) W 

2 
The integral in (37) is equal to —K{p) where K(p) is the complete elliptic integral of the first kind [17]. Again, 

the coding gain of the more general system is obtained by multiplying (37) by (1 + c2-26). The plots of the coding 

gain are shown in Fig. 20 for b = 3 and c = 2.4. 

VIII. NOISE SHAPING BY (LPTV)M PRE-AND POST FILTERS 

In this section, we consider using (LPTV)M pre- and post filters instead of LTI ones surrounding a periodically 

time varying ((PTV)M) quantizer. Since the signal model x(n) is (CWSS)M, restricting ourselves to linear time 

invariant noise shaping filters and quantizers is a loss of generality. Any optimum configuration for such processes 

should consist of (LPTV)M filters surrounding a ((PTV)M) quantizer. Using some well known multirate results, 
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it can be shown that this new quantization configuration is equivalent to an M-channel maximally decimated 

filter bank with M subband quantizers [5]. We will further impose the perfect reconstruction condition in the 

absence of quantization by confining ourselves to the class of perfect reconstruction filter banks. It follows that 

R(eJ'"') = E_1(e-'ü') where E(e-,u) and R(eju) denote respectively the analysis and synthesis polyphase matrices 

[17]. Equivalently, the analysis and synthesis filters satisfy the biorthogonality condition: (Pk(ejü>)Qm(ejul))\ IM= 

6(m - k) for all k,m. The goal is then to find the set of M analysis and synthesis filters, Pk(ejlJ) and Qk{eju) 

(equivalently the analysis and synthesis polyphase matrices), that minimize the average mean square error at the 

output due to the quantization noise. Because the general (LPTV)M problem is difficult to track analytically, we 

will only study two special forms of the above set up. The first case assumes that E(e-"J) is diagonal with diagonal 

elements equal to Vk(ejtJ). It follows that R(eJU) is also diagonal with diagonal elements equal to , .. for 

each k. The second case assumes that E(e7'<J) is paraunitary and we choose R(eJW) = Et(eJ'a'). Alternatively, the 

synthesis filters Qk(eju) are equal to Pk{eiu) for each k and (Pk{ejtJ)Pm(ejül))\ \.M= S(m - k) for all k,m. These 

two special forms are intermediate between one extreme (the LTI case) and the other (the general (LPTV)M 

case). 

8.1. Letting the synthesis filter be the inverse of the analysis filter 

Let E(ejiJ) be a diagonal matrix with diagonal elements equal to Vk(ejw) and R(eJÜJ) be also diagonal with 

diagonal elements equal to for each k. The quantization configuration is shown in Fig. 9 for the single 
^k \fi     ) 

band case and Fig. 21 for the multiband case. The scalar quantizers labeled Q are modeled as additive noise 

sources g*(n) and individually satisfy relation (7). Throughout this section, we will assume that the subband 

quantization noise sources <7fc(n) are white and pairwise uncorrelated, i.e., the noise power spectral density matrix 

is given by 

(38) 

l<     o     ...       0    \ 
0     <    ...       0 

S„(e*")=       .        '      .. 

V 0       o\M_J 
The goal is then to jointly allocate the subband bits 6* under a fixed bit rate 

1   Af-l 

&=¥£&* (39) 

and optimize Vjfe(e7"') in order to minimize the average m.s.e at the output of Fig. 9 and Fig. 21. Our strategy is 

as follows: we first find the optimum solution for the single band case of Fig. 9. Then, by interpreting the single 

band model as one of the L channels of the more general multiband case, the optimum solution for Fig. 21 follows. 

Theorem 8.1.1. Consider the scheme of Fig. 9 under the above assumptions. The optimum filter Vopt{ejlJ) that 

minimizes the average mean square reconstruction error at the output is independent of k and has the following 

magnitude squared response: 

M")f=vdm (40) 
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where Syy(ejlJ) is the power spectrum of the WSS process y(n) in Fig. 1. With the above optimum filter expression, 

the coding gain of Fig. 9 is then given by : 

2 

Gopt — r~~  ~ ;   2~7M '    ' 
Mcntö1/:. vs^)\M^)\2!£) 

where Rk(ej;J) is the kth polyphase component ofF(eju). 

Proof. Since the system has the perfect reconstruction property in the absence of quantization, the error e(n) at 

the output is simply the filtered quantization noise signal. After the downsampler, the filtered noise component 

w{n) is WSS. By result 2 of section III, £ = TT^- TO compute a^, we express the filter F(ej") in terms of its 

M polyphase components Rk(eju). Because the input signal x(n) is modeled as in Fig. 1, we can also invoke the 

polyphase identity (see [5] pp. 133) at the input to simplify Fig. 9 to Fig. 22 (The interpolation filter was not 

drawn because we are really interested in evaluating CT£, rather than a\. Since the quantization noise sources are 

assumed to be white and uncorrelated, the average mean squared error is therefore given by: 

Mh Vk J-* \Vk(ei«)\* 2n 
k-0 (42) 

--1V2-** f^ S   (en\Rk(en\2\Vk(en\2- f \^&L^ 
~ M   h J-*    VV 27r ■/-*  IW)|2  2VT 

Using the AM-GM inequality, equation (39) and the fact that \Rk(ei,J)\2 = \Rk(eju)\2, equation (42) reduces to: 

M-l     - .._..,   ,...„    .      1/M 

£ > c2-»( n £ Syy(en\Vk(en\*\Rk(en\^ £ ^g^) (43) 

Applying the Cauchy-Schwartz inequality to each term in (43), we get: 

M—l   .v       , 

£min=c2-^(l[   /    Jsyy(e^)\Rk(en\^/M (44) 

This minimum bound is achieved by choosing |Kpt(eJa,)|2 as in (40). Finally, (41) follows immediately from the 

definition of the coding gain, equation (7) and the fact that a\ = cr^/M. ■ 

The LTI case is indeed a loss of generality. Since the class of (LPTV)M filters and (PTV)M quantizers 

include the LTI case, it is clear that the performance of this more general class of filters and quantizers is at 

least as good as the LTI one. We have already shown that the optimum (LPTV)M filter for Fig. 9 reduces 

to a LTI one. The question then becomes : Is the (PTV)M quantizer providing any excess gain over the LTI 

case and if so, by how much ? We show next that, even in this restricted form of (LPTV)M filters, the coding 

gain of the above scheme is always greater than the LTI one except when the magnitude squared response of the 

polyphase components Rk(eju) of F(ejü}) are equal for all k. Starting from the denominator of (22) (the coding 
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(45) 

gain expression of Fig. 6), one can write the following series of steps: 

- M— 1        y.7T .  J, 

fc=0 J~n 

M—l       -7T ,  j, 

> h x M2(( n / ^/^:)l^(^)l2^)1/M)2 
M
 i=0  ,'~'r 

M—1      /-TT ;  J, 

=M(n / v^^i^^)!2^)2^ 
,-=o •'-* 

where the last line in (45) is the denominator of (41). Since the numerator is the same in both cases, the claim 

is proved. The first equality in (45) is obtained by using the power complementary property of the polyphase 

components of F(ejiJ). The second line is a consequence of the linearity of the integral. The third line results 

from applying the AM-GM inequality. From the AM-GM formula, we know that equality is achieved if and only 

if all \Rk(ejlJ)\2 are equal. From Fig. 22 (which was introduced in the proof of Theorem 7.1.1), we can see that 

this makes perfect sense. If all \Rk(eju)\2 are equal and since the optimum filters Vk(e^) are independent of k, 

the variance of the subband quantizer inputs will be all equal. There is therefore no variance disparity in the 

subbands and optimum bit allocation of the subband quantizers (which depends on the AM-GM inequality) can 

not produce any gain. Using the single band result, we can now derive closed form expressions for the optimum 

Voptk(eiu) and the average minimum mean squared error for the multiband case. 

Theorem 8.1.2. Consider the scheme of Fig. 21 under the above assumptions. The optimum filter Vopt^e^) (for 

each k) that minimizes the average mean square reconstruction error at the output has the following magnitude 

squared response: 

|VlM. = M^ (46) 
L-X 

where Rik(eju) is the kth polyphase component of the ith filter F^) and Sk(ejw) = £} Syi(ejlJ)\Rik(ejül)\2 is 
t=0 

the power spectrum of kth channel. Using the above optimum Eiters, the coding gain of Fig. 21 is then given by : 

T2 

Proof. By interpreting the single band result as one of the L channels of the multiband model and by using result 

2 of section III, the average mean squared error can be expressed as follows: 

1V1— X »7T 

M £j W-*        \Vk{eß«)\2       27T fc=0   (48) 

k=0 
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eJ'w)|2       2TT 



Using the same inequalities as in the proof of theorem 8.1.1, we can immediately derive (46) and (47). ■ 

Following the same type of reasoning as before, we again expect the coding gain of the more general (LPTV)M 

case of Fig. 21 to be higher than the analogous LTI one of Fig. 17. However, the complexity of the expressions 

(25) and (47) in this case prevents a formal mathematical proof. 

Example 8.1.   Equal polyphase components.   Assume that the input x(n) is modeled as in Fig.   1 where the 

upsampler M = 2 and the driving input y(n) is a zero mean gaussian AR(1) process with correlation coefficient 

0 < p < 1. Furthermore, let F{z) be the optimum FIR compaction filter of length two given by —y=(l + z~l). The 
v2 

filter actually corresponds to one of the channels of a 2 x 2 KLT which is independent of the input statistics. In 

this case, the polyphase components of F(eJ"') are Ro{e^) = Ri(eiu) = —=. Substituting in (41) and simplifying, 
V2 

we get (21), the coding gain expression of Fig. 6. In example 7.2., a closed form expression was derived for the 

AR(1) case and a plot of the coding gain is shown in Fig. 20. 

Example 8.2. Unequal polyphase components. With the same set of assumptions of example 8.1, let the filter 

F(z) be the optimum FIR compaction filter of length four. With M = 2 and assuming an AR(1) process, the 

following closed form expression was derived in [18] for the optimum compaction filter: 

F{z) = a + cz~l + bz~2 + dz~3 (49) 

where 
a = —^V\/P + \/9. °=^{y\/P+\/Q-VP\/y/p-y/(l) 

c = —ßis/pyVp + V<i-yVi>-Vv > d=—-^^/VP-VQ 

andp = 3 + p2,q = 2+p2. The polyphase components of F(ejlJ) are Ro{e}uJ) = a + be~'u and Ri{eja) =c+de~iu. 

Substituting the power spectrum expression of an AR(1) process given by (36) into (41) and using some useful 

integral formulas (see [17] pp. 429), we can derive the following coding gain expression for the scheme of Fig. 9: 

G°Pt = 2(1 - P2)l((a2 +b2 + m)K{p) _ ^E{p))l{{c2 +d2 + 2M)K{p) _ 2_ME(p)) (50) 

where K(.) is the complete elliptic integral of the first kind and E(.) is the complete elliptic integral of the 

second kind. There is a reason for writing the denominator of (50) in this form. It can be shown that the 

factors -((a2 + b2 H ) K(p) E(p)) and -((c2 + d2 + —)K(p) E(p)) represent the variance of the 
7T p p 7T p p 

outputs Ro(ejw) and Ri(ejw) respectively (with an input with power spectrum \fSyy(ej'J)). Their product is the 

geometric mean which produces the extra gain over the LTI case. The further away they are in magnitude, the 

more gain we will obtain. The plots of the coding gain formulas (37) and (50) are shown in Fig. 23. We notice 

that the coding gain of the (LPTV)M case is indeed greater than the LTI one for all values of p, although not by 

a substantial amount for the AR(1) y(n). 

8.2. Using an orthonormal filter bank 

Consider now the M-channel orthonormal filter bank shown in Fig. 10 for the single band model and in Fig. 

24 for the multiband model.  As in the previous subsection, we first analyze the single band case in detail and 
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then use the corresponding results to derive analogous expressions for the multiband case. The quantization noise 

assumptions of the previous subsection are still true here. The goal is again to jointly allocate the subband bits 

bk under the constraint (39) and optimize the orthonormal filter bank in order to minimize the average m.s.e. 

Theorem 8.2.1. Consider the scheme of Fig. 10 under the above assumptions. The synthesis section of the 

optimum orthonormal filter bank {Pk(eju)} corresponds to choosing one of the filters, say Poie3") to be equal to 

F(eju>) and the remaining filters Pk(ejw), k = 1,..., M -1, to be orthogonal to P0(eju). In this case, the optimum 

orthonormal Glter bank reduces to Fig. 5 where the quantizer Q is allocated Mb bits according to (37). 

Proof. By applying the blocking operation and using the polyphase representation [5], the scheme of Fig. 10 can 

be redrawn as in Fig. 25, where E(e*") is the polyphase matrix of the analysis bank, Et(e*fa') is the polyphase 

matrix of the synthesis bank and Rk{ejw), k = 0,..., M -1, are the M polyphase components of the filter F(e3U). 

Let U(ejiJ) be the 1 x M vector whose jfcth element is Rk(ejiJ). Then, the average m.s.e can be expressed as follows: 

s = iff fraa(u(^w)E^w)s«EVw)uvw))f£ (51) 

Since the integrand is in a quadratic form, the trace operator can be removed. Furthermore, since E(eJ'w)Et(eJ'IJ) = 

/ by orthonormality and U(e*")Ut (e*")) = 1 by the Nyquist property of the F(ejiJ), we can rewrite (51) as follows: 

r* P(e^)SqqPt(e^) du (52) 

P(e*")Pt(e*")    2TT 
- JL f 
~ Mj_, 

where P(eJa') = U(eJÜ')E(eiü').   Since the integrand of (52) is positive for all u, minimizing (52) is equivalent 
.    P(eJ'a,0)SqqPt(e^°) . 

to minimizing the integrand at each frequency. But for any fixed frequency u0, the ratio     p(ejw0)pMej<j0)     1S 

a Rayleigh quotient. For each frequency u, the minimizing vector P0pt(ejtJ) has the form (0 ... 1 ... 0) 

where the 1 in the ith position corresponds to the minimum noise variance o^.. Since P(ejw) = U(eJ'u)E(e-,'<J), the 

minimizing vector Popt(ejiJ) can be obtained by setting the ith column in E(e*") to be equal to U^e*") and all 

the remaining columns to be orthogonal to U(e,'w). This is equivalent to the statement of the theorem. ■ 

The optimum orthonormal filter bank thus reduces to the scheme of Fig. 5 with Mb bits allocated to the quantizer. 

The result of Theorem 8.2.1 is very intuitive and somehow expected: filter and decimate the oversampled signal 

x{n) according to its model and then quantize y(n) in Fig. 5 with b = Mb bits per sample. As we mentioned 

before, this amounts to fixing the bit rate (number of bits per second) in order to trade quantization resolution 

with sampling rate. It is interesting though to see that this very intuitive scheme is equivalent to using an optimum 

orthonormal filter bank as a sophisticated quantizer to the input x(n). With (7) in mind, the coding gain expression 

can be derived following the lines of the proof of Theorem 5.1 and is equal to 22b(-M~1\ This is an exponential 

gain which can be quite large for moderate values of M but unlike all previous schemes, depends on the bit rate 

b. Finally, to end this section, we would like to derive an analogous result (to Theorem 8.2.1) for the multiband 

case. 
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Theorem 8.2.2. Consider the scheme of Fig. 24 under the same assumptions. The synthesis section of the 

optimum orthonormal filter bank corresponds to choosing L of the filters to he equal to Fk (e?u) and the remaining 

filters Qk{ej{J), k = L + 1,..., M - 1, to be the M - L - 1 orthogonal Glters to Fi(ej"), i = 0,...,L-l. In this 

case, the optimum orthonormal filter bank reduces to Fig. 16 with an equivalent average number of bits b equal 

to Mb/L bits. 

Proof. By interpreting the single band result as one of the L channels of the multiband model and by using result 

2 and equation (39), the result follows immediately. ■ 

With the above b, we can now perform an optimum allocation of subband bits for the scheme of Fig. 16. This is a 

standard allocation problem that arises in subband coding application [11]. By applying the AM-GM inequality 

1 L~X 

to the output error expression £ = c— Yj 2 2bho~yk, we get 
k=o 

£rnin = c2-^±(f[c,li)
1/M (53) 

i=0 

L-\ 

which can be achieved by setting bk = b + 0.51og2 a
2

yk — 0.51og2 TT (o~lJ      • This optimum bit allocation formula 
t=0 

will in almost all cases yield non integer solution for the bits. A quick remedy might be to use a simple rounding 

procedure or a more sophisticated algorithm [19] to obtain integer solutions. A detailed discussion of the topic of 

allocating integer bits to the channel quantizers is however outside the scope of the paper. The noise variance in 

L   1 L_1 

Fig. 12 simplifies to c2 2b-rf{-f ^ alk)- The coding gain expression takes therefore the following form: 
M    L  ,    n 

gopt = 2n^^m 
<°pt = * "   "GWöI~) (54) 

where AM is the arithmetic mean, GM is the geometric mean and crjj. is the variance of the ith signal yi(n) in 

Fig. 2. We observe that when L = 1, we get the coding gain of the single band case and when L = M, the scheme 

of Fig. 16 reduces to an orthonormal filter bank, the average number of bits is equal to b and (54) reduces to the 

well known expression of the coding gain of an orthonormal filter bank. 

Appendix A. 

Proof of result 1 in section III. The interpolated subband signals can be expressed as ij(n) = >J Vi(k)fi(n — Mk). 

Hence, 

E[xi(n)xj'(n - Mm)] = E J2 ViWii" - Mk') E yj*(k)fj'(n -Mk- Mm) (55) 

Let r(u) be the cross correlation between the jointly WSS processes yi{n) and yj(n), that is, r(u) = E[yi(n)yj*(n- 

u). Using the change of variable k' — k = 1, the preceding equation becomes: 

E[xi{n)xj*{n - Mm)} = ]Tr{l) J2 /<(" - Mk')fj'(n + M(l - m) - Mk') (56) 
l k' 
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Substituting (56) in the left hand side of (3), we get: 

M-l 

j- 2>(o J2 53 fi(n - (Mk>+*))//(»+M(l -™)- (Mk>+*)) (5?) 

Since M is positive, k' and k are integers and 0 < k < M, we can always replace Mk' + k by an integer u. That 

is, there always exist an integer u such that k' is the quotient and k is the remainder obtained from dividing u by 

M. We can therefore rewrite (57) as follows: 

jj E r(o E /<(» - «)£>+Mc - m) -«) = if E r(o E /«(*)/**(*+M<! - m))      (58) 
l u JA: 

But the orthonormality of the filter bank implies, in particular, that ^2fi(k)fj*(k + M(l - m)) =0   V l,m. 
k 

Thus, the inner sum in (58) reduces to zero and the result follows. ■ 

Appendix B. 

Phase randomization of a (CWSS)M process. A WSS process i(n) can be obtained from a (CWSS)M process 

x(n) by introducing a random shift 9 in the (CWSS)M signal x(n) [12],[13],[14]. The parameter 9 is a discrete 

random variable that can take any integer value from 0 to M - 1 with equal probability 1/M. Furthermore, the 

random variable 6 is assumed to be independent of x(n). The autocorrelation function of x(n) is given by: 

Rix(n,k) = E{x(n)x(n - jfc)} = E0{E{x(n - 9)x{n -k- 9)\9}} = E0{Ryy{n - 9,k)} 
oo 1   M-l 1   M+n-1 

=   J2  Rxx(n-9,k)p(9) = —YlRxx(n-9,k) = —    £   Rxx(m,k) 
(59) 

M ^    "v        '  '     M 
6=0 m=n 

Now observe that 

1    M+n-l 1   M-l .   M+n-1 *    n-1 

—    J]    A^(m,A;) = — ^üIX(m,A;) + —    j^    Rxx(m,k) - — £ Rxx(m,k) 
m=n m=0 m—M m=0 

M-l -    M+n-1 -    M+n-1 

= ^Eß-(m'A;)+M    E   ^xxKfc)-—    ^   Äx,(m,A) (60) 
m=0 m=M m=M 

1    M-l 
= M  E ßzx("l,A:) 

m=0 

The second line follows because Rxx(m, k) = Rxx(m + M, k) by cyclostationarity. The last sum is independent of 

n implying that Rxx(n,k) is a function of A; only and that the process x{n) is indeed WSS. Furthermore, 

1   M-l 

£««(*) = jjjE ***("•*) (61) 

n=0 

Appendix C. 

Proof of equation (13). Let x(n) be a (CWSS)M process input to a linear time invariant filter P{eiu). The output 

z(n) is a (CWSS)M process [8] and is related to x(n) by the well known convolution sum z(n) = ^2iP(i)x(n — i). 
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Our goal is to derive an expression for the average variance of the (CWSS)M process z(n). So, 

-    M-l j    M-l 

** = ^ E^i*(n)i2} = ^ E EE^v^W"-^'^-^ 
n=0 n=0     i      i 

1    M—1 

= EEPWP*ü)^ E ^(".i-^EEp^'^^-^ 
t      i n=0 t      j 

where the last equality follows from equation (61). By making the change of variables j -i = I, we get : 

°** = E E>ü - i)p*u)Rxx(i) = E E »P(')HX*(O (63) 

where rp(Z) = X^P*(fcMA; - n) IS ^he deterministic autocorrelation of p(n). Taking the discrete time fourier 

transform of (63), we get (11). ■ 

Appendix D. 

Power spectral density of an interpolated random process. Let y(n) be a wide sense stationary (WSS) random 

process, input to an interpolation filter as shown in Fig. 1. The output x(n) is in general a (CWSS)M process 

[8]. The average power spectral density of the "stationarized" process has the form 

Sxx{en=jfSyy{e^M)\F{en? (64) 

To derive (64), we can use (61) to write 

- M-l 

*«(*) = M E E Ryy^ ~ *) E f(n ~ Mi)f(n ~ k - Mti (65) 
i      j n=0 

Making the consecutive change of variables i — j =1 and n — Mi = u, equation (65) simplifies to: 

1 M-l-Mi 

^*(*) = TfEÄ»»(/)E E /(«)/(«-*+MI) 
M , «■ l l        U=—Ml 

= Tr E *U0 E /(«)/(« - (fc - M0) = Tf E Äyy(0»"/(* - Mi) 

(66) 

2 u I 

where 77(71) is the deterministic autocorrelation of f(n) as defined in appendix C. Equation (66) can be inter- 

preted as passing the autocorrelation sequence jjRyy(n) through the interpolation filter 77 (n). Taking the fourier 

transform of (66), we obtain (64) or equivalently (12). The expression for multiband case, equation (15), can be 

obtained in a similar fashion. Again, from (61), one can write: 

-   M-i 1   M-l 

R**(k) = M £ E{x(n)x*(n - k)} = — £ £ £ f(n - Mi)E{y(n)y\n - *)}ft(n - k - Mj) 
n=0 n=0     i      j 

M-l V      ' 

b E EE^-MOR^*)^»-*-^-) 
M   „ ■  ■ n=0     t      j 

where f (n) = (/o (n)    /1 (n)    ...    JL-\ (n))   and Ry (k) is the autocorrelation matrix of the L WSS inputs yk (n). 

By following the same steps used to derive (64), we obtain (13). ■ 
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Fig. 15.  A cascade of two multirate interconnections for the single band case. 
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Fig.  16. Quantizing the lower rate signals yk (n)  (multiband case). 
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Fig. 17.  Noise shaping by LTI pre- and post filters for the multiband case where the postfilter is assumed to be 
the inverse of the prefilter. 
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Fig. 18.  General LTI pre- and post filters for noise shaping for the multiband case. 
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Fig. 19.  Coding gain curves for the MA(1) case with 6 = 3 and c = 2.4. 
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Fig. 20.  Coding gain curves for the AR(1) case with 6 = 3 and c = 2.4. 
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Fig. 21. Scheme 1 for noise shaping using (LPTV)M pre- and post filters (the multiband case). 
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Fig. 22. An equivalent representation of Fig. 9. 
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Fig. 23.  Coding gain curves for the LTI and (LPTV)M   cases under the assumption of a single band 
model with M = 2 and y(n) is an AR(1) process. 
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Fig. 24. Scheme 2 for noise shaping using (LPTV)     pre- and post filters (the multiband case). 
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